
Competence Center for Case-based reasoning,

DFKI, Kaiserslautern

Centre for model-based software engineering

 and explanation-aware computing,

 University of West London, UK

 documentation:

SDK for building and integrating CBR systems

Table of Contents

2

What is CBR
Knowledge formalisation in CBR
The CBR cycle (the four ‘R’)
CBR areas of application
What's myCBR
Architecture diagram
myCBR sources and documentation
Prerequisites
Prerequisites for development
Information's for developers
How to install myCBR (getting started)
How to install within Eclipse (for Developers)
What and How to start
myCBR Application design
myCBR SDK integration
myCBR the workbench GUI explained
myCBR getting started: modelling your domain knowledge
myCBR getting started: refining your knowledge model

What is CBR

3

What is CBR

The assumption of CBR: Similar problems have similar solutions

The general approach: Experiences are stored as cases with a problem description part and a solution part

To solve a new problem: The formal problem description is presented to the CBR system. Then similar cases with
similar problem descriptions are retrieved by the system. The experiences (solution part) of the most similar case is
then reused to solve the new problem presented to the system.

Case

Problem
description

Solution
description

4

What is CBR
The knowledge formalisation for CBR: Knowledge Containers

Similarity Measures

The retrieval of similar cases is based upon the use of similarity functions
(or measures) to compute the distance or similarity of two cases.

Case base

The systems experience is stored as cases within the case base which can
be seen as a special form of a data base.

Vocabulary

The cases themselves, the similarity measures and the adaptation
knowledge are composed upon a vocabulary that contains the objects of
interests (terms, attributes, concepts).

Adaptation knowledge

Adaptation knowledge is used whenever a retrieved case’s solution has to
be adapted to be suitable to solve the presented problem. An example for
this kind of knowledge is given by adaptation rules like “If X is not
available use Y instead.”

5

Examples of CBR in human reasoning

A medical doctor remembers the case history of another Patient

A lawyer argues with similar original precedence

An architect studies the construction of existing building to base his new designs on it

A work scheduler remembers the construction steps of a similar work piece

A mathematician tries to transfers a known proof to a new problem

A service technician remembers a similar defect at another device

A salesperson recommends similar products to similar customers

6

The four steps of the CBR cycle: The 4 R’s

Retrieve: the most similar case or cases: The case(s) with the most similar problem description (s)

Reuse: the information/experience stored in the solution descriptions of the retrieved case(s) to solve the
presented problem

Revise: the retrieved solution if it is necessary to solve the presented problem in a satisfying way

Retain: the tested adapted new solution/experience as a new case, consisting of the presented problem description
and the adapted solution description as a new experience in the case base

7

Applications of CBR

CBR is capable of automating the tasks of planning, diagnosis, design and recommending.

It is used in a wide variety of successful business solutions. At the current time CBR is one of the most used AI
methodologies within commercial applications.

Application possibilities/analogies for CBR:

8

A medical doctor remembers the case history of another Patient

A lawyer argues with similar original precedence

An architect studies the construction of existing building

A work scheduler remembers the construction steps of a similar work piece

A mathematician tries to transfers a known proof to a new problem

A service technician remembers a similar defect at another device

What is myCBR

9

SDK for building and integrating CBR systems

myCBR is an open-source case-based reasoning tool hosted at DFKI

myCBR enables you to build CBR systems and their knowledge and to use them in your applications

Its aims are:

myCBR supports the teaching and research of the CBR approach by offering an easy way to prototype CBR engines

You can download the latest version here: http://mycbr-project.net/download.html

myCBR is developed as open source software currently by these Institutions:

 Competence Center for Case-based reasoning at the German Research Center for Artificial Intelligence

 Centre for model-based software engineering and explanation-aware computing at the University of West London

10

to be easy to use

to enable fast prototyping

to be extendable and adaptable

to integrate state-of-the-art CBR functionality

http://www2.dfki.de/web/
http://mycbr-project.net/download.html
http://mycbr-project.net/download.html
http://mycbr-project.net/download.html
http://mycbr-project.net/download.html

SDK for building and integrating CBR systems

Current Features of myCBR

11

Powerful GUIs for modelling knowledge-intensive similarity measures

Similarity-based retrieval functionality

Export of domain model (including similarity measures) in XML

Extension to structured object-oriented case representations, including helpful taxonomy editors

Powerful textual similarity modelling

Scriptable similarity measures using Jython

Rapid prototyping via CSV

Improved scalability

Simple data model (applications can easily be build on top)

Fast retrieval results

Rapid loading of large case bases

 myCBR: Workbench and SDK [API]

12

// add a casse base to the project

DefaultCaseBase newcasebase = project.createDefaultCB("myCaseBase");

// add a case to the case base

Instance instance = car.addInstance("car1");

instance.addAttribute(manufacturerDesc,manufacturerDesc.getAttribute("BMW"));

newcasebase.addCase(i, "car1");

// set up query, define a query instance and do a retrieval

Retrieval results = new Retrieval(car);

Instance query = results.getQuery();

query.addAttribute(manufacturerDesc.getName(),manufacturerDesc.getAttribute("

Audi"));

SDK for building and API for integrating CBR systems in your Application

Modelling the domain:

 Vocabulary (Attributes,

Concepts)
 Similarity measures
 Adaptation knowledge

Case base editing:

 add/remove cases
 import/export data (CSV,

XML)
 create, edit, optimise case

base(s)

Retrieval Engine:

Test the retrieval
within your model

Modelling
Explanation Knowledge

Modelling
Explanation Knowledge

CBREngine

[Model]

Case base(s)

Explanation
knowledge t

es
ti

n
g

re
tr

ie
va

l

o
p

ti
m

is
at

io
n

Provide
Model

Provide case
base(s)

retrieve cases

post query

load/control a project

Load/control case bases

Explanation
knowledge

13

Info's on myCBR

14

Modularization of the project
The project is well modularized which should offer potential developers easy access to the code structure and class
hierarchy of myCBR. The java documentation is available here: http://mycbr-project.net/doc/index.html

15

de.dfki.mycbr.core
Contains all classes that represent core functionality
of a CBR application such as the domain model, case
bases, similarity functions and retrieval algorithms.

de.dfki.mycbr.core.action
Defines classes for specifying actions that operate on
Observable objects.

de.dfki.mycbr.core.casebase
Contains classes for the basic definition of
DefaultCaseBase objects.

de.dfki.mycbr.core.explanation
Explanations provide additional information on all
myCBR concepts.

de.dfki.mycbr.core.model
Contains classes for the basic definition of the
project's model.

de.dfki.mycbr.core.retrieval

All retrieval algorithms extend the abstract class
RetrievalEngine and can be used within Retrieval
objects to obtain the retrieval results (possibly
ordered pairs of case and corresponding similarity).

de.dfki.mycbr.core.similarity
Contains standard classes to maintain similarity
functions for attribute descriptions (local similarity
functions) and concepts (amalgamation functions).

de.dfki.mycbr.core.similarity.config
Contains various enumerations specifying
configurations for the corresponding similarity
function.

de.dfki.mycbr.io
Contains classes that handle import and export of
relevant CBR application data.

de.dfki.mycbr.util
Contains utility classes that are useful but do not
have a special meaning for case-based reasoning
applications.

http://mycbr-project.net/doc/index.html
http://mycbr-project.net/doc/index.html
http://mycbr-project.net/doc/index.html
http://mycbr-project.net/doc/index.html
http://mycbr-project.net/doc/index.html
http://mycbr-project.net/doc/de/dfki/mycbr/core/package-summary.html
http://mycbr-project.net/doc/de/dfki/mycbr/core/action/package-summary.html
http://mycbr-project.net/doc/de/dfki/mycbr/core/casebase/package-summary.html
http://mycbr-project.net/doc/de/dfki/mycbr/core/explanation/package-summary.html
http://mycbr-project.net/doc/de/dfki/mycbr/core/model/package-summary.html
http://mycbr-project.net/doc/de/dfki/mycbr/core/retrieval/package-summary.html
http://mycbr-project.net/doc/de/dfki/mycbr/core/similarity/package-summary.html
http://mycbr-project.net/doc/de/dfki/mycbr/core/similarity/config/package-summary.html
http://mycbr-project.net/doc/de/dfki/mycbr/io/package-summary.html
http://mycbr-project.net/doc/de/dfki/mycbr/util/package-summary.html

Web Sources for myCBR

Your web source for myCBR:

https://git.opendfki.de/public

16

https://git.opendfki.de/public
https://git.opendfki.de/public

System Requirements

The minimum system requirements to run myCBR are:

Essentially any PC that is able to run an Java Runtime Environment with reasonable performance is ok to use
myCBR.

CBR engines developed with myCBR are slim/efficient enough to be run on recent smartphones without limitations

Software requirements to run the myCBR SDK standalone:

Java Runtime Environment (JRE) preferable in its latest version but the minimum version required is: 1.6

 You can download the latest version of JRE here: http://www.java.com/en/download/

17

http://www.java.com/en/download/
http://www.java.com/en/download/
http://www.java.com/en/download/
http://www.java.com/en/download/
http://www.java.com/en/download/
http://www.java.com/en/download/
http://www.java.com/en/download/
http://www.java.com/en/download/

Prerequisites for development

If you plan to develop the myCBR SDK further you need these additional prerequisites to be able to do so:

The Java Development Kit (JDK) with minimum version 1.6. however the most recent version recommended. You can
find the JDK here:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

A Java-Development Environment (JDE), we recommend Eclipse, which you can find here:

http://www.eclipse.org/downloads/

If you want to integrate repository access to the mycbr.opendfki.de project into you development environment we
recommend to use a plugin to do so, for example to integrate the subversion repository into the Eclipse JDE we
recommend the Subclipse Plug-In which you can find here: http://subclipse.tigris.org/

18

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/
http://subclipse.tigris.org/
http://subclipse.tigris.org/

Information's for developers

To sign up for the open source development community of myCBR, get an opendfki account here:

http://www.opendfki.de/

Repository access to the project (opendfki account required):

https://mycbr.opendfki.de/repos/mycbr-gui

During your account registration you can chose which project you like to contribute to. To contribute chose myCBR.

There is currently only the java doc available as a basis for reading into the projects source. This will be amended
shortly by additional available material for developers.

As you are invited to add to, refactor and optimise the myCBR SDK we are still following a strict policy with the
acceptance of new versions of the SDK. This policies require the passing of a series of j-unit tests that are available
with the source of the SDK also. The last decision of new versions/features of the SDK still lies with the two Centres
currently leading the development of the SDK at the DFKI and the UWL.

19

http://www.opendfki.de/
http://www.opendfki.de/
http://www.opendfki.de/
https://mycbr.opendfki.de/repos/mycbr-gui
https://mycbr.opendfki.de/repos/mycbr-gui
https://mycbr.opendfki.de/repos/mycbr-gui
https://mycbr.opendfki.de/repos/mycbr-gui
https://mycbr.opendfki.de/repos/mycbr-gui

Information's for developers

The DFKI and UWL maintain a Wiki for all information about the current development of the myCBR SDK. However
being able to access this Wiki depends on getting a user account for which you can contact christian.sauer@uwl.ac.uk.

You can find the Wiki here: http://mycbr.opendfki.de/

To get signed up to the mailing list of myCBR developers and get updates about the latest developments you can
contact: cbr@dfki.uni-kl.de .

If you want to get a broader view and the latest developments in CBR you may also consider signing up for the CBR
Wiki, to be found here: http://cbrwiki.fdi.ucm.es/mediawiki/index.php/Main_Page

20

http://mycbr.opendfki.de/
http://mycbr.opendfki.de/
http://mycbr.opendfki.de/
mailto:cbr@dfki.uni-kl.de
mailto:cbr@dfki.uni-kl.de
mailto:cbr@dfki.uni-kl.de
http://cbrwiki.fdi.ucm.es/mediawiki/index.php/Main_Page
http://cbrwiki.fdi.ucm.es/mediawiki/index.php/Main_Page
http://cbrwiki.fdi.ucm.es/mediawiki/index.php/Main_Page

myCBR Installation

21

How to install the myCBR SDK on a Windows 7 PC

1. Download the zip archive (binaries) from the myCBR download website:

http://mycbr-project.net/download.html

 This archive contains all files for the ‘product’ version of the myCBR SDK

2. Unzip the contents of the mycbr.zip in a single folder.

 The contents of your new myCBR folder should look like pictured here.

3. To Start myCBR simply run (double-click) the file

 The start-up may take a while…

22

http://mycbr-project.net/download.html
http://mycbr-project.net/download.html
http://mycbr-project.net/download.html
http://mycbr-project.net/download.html
http://mycbr-project.net/download.html

SDK for building and integrating CBR systems

If everything went correct (be patient as it is a java application the start of myCBR might take up to 30 seconds) your
first Impression of myCBR should look like this:

23

myCBR installation for developers

24

Installation of the Development Environment

Prerequisite 1: Subversion integrated into Eclipse: Subclipse

Installation: In Eclipse open the Help menu  Install new software  Enter the path at “Work with:”
http://subclipse.tigris.org/update 1.4.x  Choose Subclipse and all of its components

25

Installation of the Development Environment

For older versions of the JDE (Eclipse) or if you want to work with older versions then version 3.0 of myCBR you might
need the Eclipse: Standard Widget Toolkit (SWT)

This shouldn’t be necessary with most recent Eclipse/myCBR versions but if you have to include SWT into your Eclipse
JDE make sure you do so before you move on to configure your myCBR project.

You can download the SWT here: http://www.eclipse.org/swt/

Installation: Include SWT as a project (might be needed on older version of Eclipse)

Import  Existing Projects into Workspace

26

http://www.eclipse.org/swt/

Installation of the Development Environment

Eclipse: Standard Widget Toolkit installation (continued)

Chose the path to your downloaded SWT zip archive  Select the project (org.eclipse.swt)  Finish

Path to your zip-archive

27

Installation of the Development Environment

Eclipse: Standard Widget Toolkit installation (continued)

If your SWT installation was successful, you should have a project like this:

Path to your zip-archive

28

Installation of the Development Environment

Prerequisite 2: Import the myCBR project from the repository at the DFKI

File  Import  SVN  Checkout Projects from SVN  Next 

Create a new repository location: URL: https://mycbr.opendfki.de/repos/mycbr-gui/trunk

 Next

29

https://mycbr.opendfki.de/repos/mycbr-gui/trunk
https://mycbr.opendfki.de/repos/mycbr-gui/trunk
https://mycbr.opendfki.de/repos/mycbr-gui/trunk
https://mycbr.opendfki.de/repos/mycbr-gui/trunk

Installation of the Development Environment

Prerequisite 2: Import the myCBR project from the repository at the DFKI (continued)

Select the project as shown below, make sure to tick the checkbox ‘Check out as a project in the workspace’. Check out
the HEAD revision and select fully recursive and allow for unversioned obstructions  Finish

30

Installation of the Development Environment

Prerequisite 2: Import the myCBR project from the repository at the DFKI (continued)

If all went okay you should have a project like this in your Eclipse JDE:

Have a look at mycbr.product, this is what you need to configure to launch myCBR from your JDE

31

Launching myCBR from the JDE

Double-click ‘mycbr.product’ in your project tree: Select the Dependencies Tab  Remove All

32

Launching myCBR from the JDE

Click on ‘Add…’  (and then select) de.dfki.mycbr.gui  OK

33

Launching myCBR from the JDE

Click on ‘Add required Plug-Ins’ to let Eclipse integrate all necessary Plug-Ins for myCBR to run

34

Launching myCBR from the JDE

Back in the ‘Overview’ Tab make sure that the checkbox ‘The product includes native launcher artifacts’ is ticked.

You can now select ‘Launch an Eclipse application’ to start the myCBR SDK

35

myCBR Application design

and API use

36

myCBR Application design

Integrating a myCBR engine in your project can be achieved in different ways:

37

Central myCBR engine server and several clients: (alpha stadium development)

You can run a central server which integrates the myCBR library into a server-based
java program and then process queries, deliver query-results to thin clients

Direct myCBR integration into an application:

You can integrate the myCBR library directly into your java program and load myCBR
engines and case-bases into your program to execute queries on them

Additionally: mobile application (alpha stadium development)

There is currently a mobile centered version of myCBR under development which targets particularly the needs
of Android-based development. This version of myCBR is available to developers yet.

Application (thin)

API

Application (fat)

API

Server

Application

myCBR Application design

38

API

CBR
Engine

Input

Output

CBR Engine

Query

Results

CBR
Engine

Input

Output

Query

Results

Query

Results

Input

Output

All designs: Create an Instance of CBREngine and
use this to load your model data and case base.
After finishing loading all data into your Instance of
CBREngine you do retrievals from this CBREngine by
posting query instances to it and retrieving result
sets, containing lists off best matching cases
(Instances).

myCBR Application design: Thin Client

API use for building and integrating your CBR Engine

Thin Client Diagram: Web frontend , Server (myCBR) , Query-Retrieval (for example using JSP)

39

Application (thin)

API

Server

CBR
Engine

Query

Results

Input

Output

myCBR Application design: Thin Client

API use for building and integrating your CBR Engine : Using the API

Fat Client Diagram: Application also hosts the CBR Engine

40

Application (fat)

API

myCBR
Engine

Input

Output

Query

Results

myCBR SDK integration

41

Loading an engine/myCBR project

Don‘t forget to import the neccessary libraries: These are (depending on what you plan to do with your cbr engine):

Several ways to do things with tghe myCBR API

We chose a most simple one, which might not be most flexible or efficient but is easy to follow as a start for
developers new to myCBR. Feel free to use it however you like

Our basic approach:

In your Application class: Create an Instances of CBREngine

Load model and data (case base) into this engine

Construct your Query instance using the engine

Query the engine with the query instance

Use the result (sets) returned by the engine

The following is a walkthrough of the example given in the end of this chapter.

42

Overview: CBREngine

Don’t forget to define your (myCBR)-project variables in your copy (sourcecode!) of the Class “CBREngine”

43

Methods

Modifier and Type Method and Description

de.dfki.mycbr.core.Project
createCBRProject() This methods creates a myCBR project and
loads the cases in this project.

de.dfki.mycbr.core.Project
createemptyCBRProject() This methods creates an EMPTY
myCBR project.

de.dfki.mycbr.core.Project
createProjectFromPRJ() This methods creates a myCBR project
and loads the project from a .prj file

static java.lang.String getCaseBase()

static java.lang.String getConceptName()

static java.lang.String getCsv()

static java.lang.String getProjectName()

static void setCasebase(java.lang.String casebase)

static void setConceptName(java.lang.String conceptName)

static void setCsv(java.lang.String csv)

static void setProjectName(java.lang.String projectName)

Constructor and Description

CBREngine()

//Staff_dir/K/HOME/sauechr/Workshop Tutorial myCBR Files/cbrrecommender/main/CbrEngine.html
//Staff_dir/K/HOME/sauechr/Workshop Tutorial myCBR Files/cbrrecommender/main/CbrEngine.html
//Staff_dir/K/HOME/sauechr/Workshop Tutorial myCBR Files/cbrrecommender/main/CbrEngine.html
//Staff_dir/K/HOME/sauechr/Workshop Tutorial myCBR Files/cbrrecommender/main/CbrEngine.html
//Staff_dir/K/HOME/sauechr/Workshop Tutorial myCBR Files/cbrrecommender/main/CbrEngine.html
//Staff_dir/K/HOME/sauechr/Workshop Tutorial myCBR Files/cbrrecommender/main/CbrEngine.html
//Staff_dir/K/HOME/sauechr/Workshop Tutorial myCBR Files/cbrrecommender/main/CbrEngine.html
//Staff_dir/K/HOME/sauechr/Workshop Tutorial myCBR Files/cbrrecommender/main/CbrEngine.html
//Staff_dir/K/HOME/sauechr/Workshop Tutorial myCBR Files/cbrrecommender/main/CbrEngine.html
//Staff_dir/K/HOME/sauechr/Workshop Tutorial myCBR Files/cbrrecommender/main/CbrEngine.html
//Staff_dir/K/HOME/sauechr/Workshop Tutorial myCBR Files/cbrrecommender/main/CbrEngine.html
//Staff_dir/K/HOME/sauechr/Workshop Tutorial myCBR Files/cbrrecommender/main/CBREngine.html

Define your project in the CBREngine java

Define your (myCBR)-project variables in your copy of the Class “CBREngine”

Set path to myCBR projects:

//private static String data_path, for example = "C:\\myCBRprojects\\project\\";

private static String data_path = "K:\\Example_Projects\\examples\\";

Project specific variables:

// name of the project file

private static String projectName = "NewExampleProject.prj";

// name of the central concept

private static String conceptName = "Car";

// name of the csv containing the instances

private static String csv = "cars_casebase.csv";

// set the separators that are used in the csv file

private static String columnseparator = ";";

private static String multiplevalueseparator = ",";

// name of the case base that should be used; the default name in myCBR is CB_csvImport

private static String casebase = "CarsCB";

44

Start coding your Application class with imports

Don‘t forget to import the neccessary libraries (Check with Ctrl+Shift+o in Eclipse)
Usually these libraries are:

import java.text.ParseException;

import java.util.List;

import de.dfki.mycbr.core.Project;

import de.dfki.mycbr.core.casebase.Instance;

import de.dfki.mycbr.core.model.Concept;

import de.dfki.mycbr.core.model.FloatDesc;

import de.dfki.mycbr.core.model.IntegerDesc;

import de.dfki.mycbr.core.model.SymbolDesc;

import de.dfki.mycbr.core.retrieval.Retrieval;

import de.dfki.mycbr.core.retrieval.Retrieval.RetrievalMethod;

import de.dfki.mycbr.core.similarity.Similarity;

import de.dfki.mycbr.io.CSVImporter;

import de.dfki.mycbr.core.*;

import de.dfki.mycbr.core.model.*;

import de.dfki.mycbr.util.Pair;

import de.dfki.mycbr.io.CSVImporter;

45

Loading a project into the Engine and

preparing the data

//Within your Application class: Create your instance of the CBR ENGINE (named „engine“ here)

CBREngine engine = new CBREngine();

//Create a Project (named “rec” here) and load all necessary data into it

Project rec = engine.createProjectFromPRJ();

// create a case base (named “cb” here)

// and assign the case base to be used for submitting a query

DefaultCaseBase cb = (DefaultCaseBase)rec.getCaseBases().get(engine.getCaseBase());

// create a Concept (named “myConcept” here) of the main Concept (type) of the Project;

Concept myConcept = rec.getConceptByID(engine.getConceptName());

46

Prepare a query I: Retrieval and query instance

// create a new retrieval (called “ret” here)

Retrieval ret = new Retrieval(myConcept, cb);

// specify the retrieval method

ret.setRetrievalMethod(RetrievalMethod.RETRIEVE_SORTED);

// available retrieval methods are: RETRIEVE , RETRIEVE_SORTED, RETRIEVE_K ,
RETRIEVE_K_SORTED

// create a query instance (named “query” here) / A query instance essentially is a case that will

// have assigned the values to its attributes that specify the query

Instance query = ret.getQueryInstance();

47

Prepare a query II: Insert values

// Insert values into the query: Symbolic Description

SymbolDesc colorDesc = (SymbolDesc) myConcept.getAllAttributeDescs().get("Color");

query.addAttribute(colorDesc,colorDesc.getAttribute("Green"));

// Insert values into the query: Float Description

FloatDesc priceDesc = (FloatDesc) myConcept.getAllAttributeDescs().get("Price");

try {query.addAttribute(priceDesc,priceDesc.getAttribute("4799.0"));}

catch (ParseException e) {e.printStackTrace();}

// Insert values into the query: Float Description

FloatDesc mileageDesc = (FloatDesc) myConcept.getAllAttributeDescs().get("Mileage");

try {query.addAttribute(mileageDesc,mileageDesc.getAttribute("10000"));}

catch (ParseException e) {e.printStackTrace();}

48

Perform retrieval and use result

See the example JSP project for a more complex use and display of the retrieval result.

// perform retrieval

ret.start();

// get the retrieval result as a List (named “result” here)

List <Pair<Instance, Similarity>> result = ret.getResult();

if(result.size() > 0){

 String casename = result.get(0).getFirst().getName(); // get the case name

 Double sim = result.get(0).getSecond().getValue(); // get the similarity value

 answer = "I found "+casename+" with a similarity of "+sim+" as the best match.";

}

else{ System.out.println("Retrieval result is empty"); }

49

Selection and use of Amalgamation functions

Remember: An amalgamation function is a weighted sum of all local similarities (attribute
similarities) of a concept that constitutes the overall global similarity measure of the concept.

Sometimes it can be useful to be able to switch between different amalgamation functions, for
example to comply to different user preferences within different user groups. The myCBR API
allows you to access and use different amalgamation functions, which you have modelled before
using the workbench.

//List all available amalgamation functions for a concept

List<AmalgamationFct> liste = myConcept .getAvailableAmalgamFcts();

//Set an amalgamation function to be used for the similarity computation of a concept

myConcept.setActiveAmalgamFct(Amalgamation function amalgam);

50

API in general: loading a myCBR project

If you don‘t want to use the CBREngine class you find the general API command to handle projects etc. In the
following slides:

// To load new project use:

// data_path thereby pointing to the path where the project is stored+the projects name

Project myproject = new Project(data_path+projectName);

// To create a concept and get the main concept of the project.

// The name (conceptName) has to be specified at the beginning of your class-code

Concept myconcept = project.getConceptByID(conceptName);

// Initialize CSV Import with this code: (data_path: Path to your csv folder + the csv-
file itself

CSVImporter mycsvImporter = new CSVImporter(data_path+csv, myconcept);

// To set the separators that are used in the csv file use these codes.

csvImporter.setSeparator(columnseparator); // column separator

csvImporter.setSeparatorMultiple(multiplevalueseparator); // multiple value separator

51

API in general: importing project data

// To prepare the data for the import of the project data in csv-format you can use

these methods:

csvImporter.readData(); // read csv data

csvImporter.checkData(); // check formal validity of the data

csvImporter.addMissingValues(); // add missing values with default values

csvImporter.addMissingDescriptions(); // add default descriptions

// Finally to do the import of the instances of the Concept defined use:

csvImporter.doImport(); // Import the data into the project

52

API in general: querying your project

Initiate a query:

// create a new retrieval

Retrieval ret = new Retrieval(myConcept, cb);

// specify the retrieval method

ret.setRetrievalMethod(RetrievalMethod.RETRIEVE_SORTED);

// available retrieval methods are: RETRIEVE , RETRIEVE_SORTED, RETRIEVE_K , RETRIEVE_K_SORTED

// create a query instance

Instance query = ret.getQueryInstance();

53

API in general: querying your project

Insert values into the query:

// Symbolic Description

SymbolDesc manufacturerDesc = (SymbolDesc) myConcept.getAllAttributeDescs().get("Manufacturer");

query.addAttribute(manufacturerDesc,manufacturerDesc.getAttribute("bmw"));

// Float Description

FloatDesc priceDesc = (FloatDesc) myConcept.getAllAttributeDescs().get("Price");

query.addAttribute(priceDesc,priceDesc.getAttribute("47699.0"));

// Int Description

IntegerDesc yearDesc = (IntegerDesc) myConcept.getAllAttributeDescs().get("Year");

query.addAttribute(yearDesc,yearDesc.getAttribute("1996"));

54

API in general: querying your project

Insert values into the query (continued):

// String Description

StringDesc titleDesc = (StringDesc) myConcept.getAllAttributeDescs().get("Title");

query.addAttribute(titleDesc,titleDesc.getAttribute("Cheese-Crusted Chicken with
Cream"));

// Symbolic Description and multiple Values

SymbolDesc methodDesc = (SymbolDesc) myConcept.getAllAttributeDescs().get("Method");

// define a list that will be used to store the values

LinkedList<Attribute> list = new LinkedList<Attribute>();

// add query values to the list

list.add(methodDesc.getAttribute("roast"));

list.add(methodDesc.getAttribute("arrange"));

list.add(methodDesc.getAttribute("warm up"));

list.add(methodDesc.getAttribute("stir"));

list.add(methodDesc.getAttribute("cook"));

list.add(methodDesc.getAttribute("melt"));

// create a multiple attribute and add the attribute's description and the specified
list

MultipleAttribute<SymbolDesc> mult = new MultipleAttribute<SymbolDesc>(methodDesc,
list);

// add the query attribute to the list

query.addAttribute(methodDesc.getName(), mult);

55

API in general: execute a query / use result

Execute the query (do the retrieval):

// perform retrieval

ret.start();

// get the retrieval result

List<Pair<Instance, Similarity>> result = ret.getResult();

// get the case name

result.get(0).getFirst().getName();

// get the similarity value

Result.get(0).getSecond().getValue();

56

API in general: accessing the model

// get all attributes of the CBR case model

HashMap<String, AttributeDesc> valueMap = myConcept.getAllAttributeDescs();

// get the allowed values for each Attribute

for (Map.Entry<String, AttributeDesc> entry: valueMap.entrySet()) {

 System.out.println(entry.getValue());

 AttributeDesc attdesc = entry.getValue();

 String attClass = attdesc.getClass().toString();

 if (attClass.compareTo("class de.dfki.mycbr.core.model.SymbolDesc")==0){

 SymbolDesc symbolDesc = (SymbolDesc) entry.getValue();

 Set<String> elements = symbolDesc.getAllowedValues();

 for (String allowedValue : elements) {

 System.out.println("\t\t"+allowedValue);

 }

 }

}

57

myCBR SDK integration

58

Directlty create a project and enter data into it, create a query and run the retrieval in its most compact form:

// requires myCBR 3.1
Project p = new Project();
// Create Concept Car
Concept car = p.createTopConcept("Car");
// add symbol attribute
HashSet<String> manufacturers = new HashSet<String>();
String[] manufacturersArray = { "BMW", "Audi", "VW", "Ford","Mercedes", "SEAT", "FIAT" };
manufacturers.addAll(Arrays.asList(manufacturersArray));
SymbolDesc manufacturerDesc = new SymbolDesc(car,"manufacturer",manufacturers);
// add table (similarity) function
SymbolFct manuFct = manufacturerDesc.addSymbolFct("manuFct", true);
manuFct.setSimilarity("BMW", "Audi", 0.60d);
manuFct.setSimilarity("Audi", "VW", 0.20d);
manuFct.setSimilarity("VW", "Ford", 0.40d);
// add case base
DefaultCaseBase cb = p.createDefaultCB("myCaseBase");
// add case
Instance i = car.addInstance("car1");
i.addAttribute(manufacturerDesc,manufacturerDesc.getAttribute("BMW"));
cb.addCase(i, "car1");
// set up query and retrieval
Retrieval r = new Retrieval(car);
Instance q = r.getQuery();
q.addAttribute(manufacturerDesc.getName(),manufacturerDesc.getAttribute("Audi"));
r.start();
// r now contains the retrieved best case(s)

myCBR workbench: GUI elements

59

Main View Elements

 File Menu:

Open/Save Projects
Model: Actions available for
Models, Concepts, Attributes

Shortcuts for:

Create, Open and Open recent
projects

The Similarity Measure view:

This view shows you the
assigned Similarity
Measures for a selected
Project, Concept or
Attribute. It further provides
the actions to add or
remove Similarity Measures
to the selected Project,
Concept or Attribute.

The Projects View:

This view provides an
overview of your currently
opened projects in a tree
structure. It further provides
all necessary actions to
add/remove elements
to/from your model.

Main View:

This is where you get
detailed information and
ways for interactions with
your model for a selected
component of your model.

Perspective Tabs:

Selecting the Tabs switches between the
different available Perspectives in myCBR.
The two main perspectives now are:
Modelling, where you design your model
and Case Bases where you create and
optimise your Cases and Case bases

60

Projects View Elements

An Attribute:

A DoubleClick: shows
detailed information
about the Attribute.

The Concept Tree:

This Tree lists all
Attributes of the
selected Concept, a
DoubleClick: shows
detailed information
about the concept

The Project Tree:

This Tree lists every
Concept within the
project, a DoubleClick:
shows detailed
information about the
project

Start a retrieval: Starts
the retrieval task for
the selected project

Add Concept: Add a
new concept (thing) to
the selected project

Add a Concept as
Attribute: Add a
Concept as an Attribute
to the selected Concept:
think of Part-of relations

Add an Attribute: Add
an Attribute to a
selected Concept

Delete: Delete the selected
Component (Either Concept
or Attribute) Every depen-
dent Component will be
deleted as well

Integer Attribute Icon

Float Attribute Icon

Symbol Attribute Icon

61

Similarity Measures View

The generated default
Similarity Measure (In
this Example for the
Attribute ‘Body’ of the
Car Concept

Example of an added
alternative Similarity
Measure

Delete a selected
Similarity Measure

Add a Similarity Measure for
the selected component. To
be able to add a Measure
the default generated
Measure must be selected.

62

Main View: Used cars example

The list of defined
Similarity Measures for
the selected component

The selected component
in the project tree is
highlighted

Main information
display for the selected
component

Tabs for the quick navigation
to the different views/editors
of a selected component

The Tab label of the
selected component

63

Edit similarity measures: Symbol, table function

 The diagonal which splits
the either symmetric or
asymmetric halves of the
similarity matrix.

The colours of the fields
are an optical aid to
visualise the values.

The Attribute ‘Body’ of the
Concept ‘Car’ is selected

Symmetry: Choosing
symmetric makes the
similarity matrix symmetric

The default (auto generated)
similarity measure for the
attribute ‘body’ is selected

Symmetry: Choosing
asymmetric makes the
similarity matrix asymmetric

The table editor is used to
describe the similarity
mode table. This similarity
mode can be chosen for
the slot type symbol.

If there are only a few
values for your slot which
can’t be ordered absolutely
or hierarchically, you
should use the table editor.

64

Edit similarity measures: Symbol, Taxonomy

Symmetry: Selects if the
similarity is symmetric or
asymmetric (f() or (f(),g()))

Uncertain : Opens up access
to the “Semantics of
uncertain” values below to
choose one semantic (See
next slide)

The Taxonomy editor,
which allows you to drag
& drop nodes in the
taxonomy and to enter
similarity values
manually by double-
clicking a node.

The taxonomy editor is
used to describe the
similarity mode taxonomy.
This similarity mode can be
chosen for the slot type
symbol.

You could use taxonomy as
similarity mode in case the
slot’s values can be
arranged in a hierarchical
structure, such that:

• nodes on same levels

are disjoint sets
• nodes on the last level

are real-world objects
• inner nodes consist of

the real-world objects
that follow in the
hierarchical order

65

Include the values of inner (abstract)
notes in the similarity calculation. An
inner node is for example: blue, as an
abstract (class) of light_blue and
dark_blue

Select how to handle values for inner
(abstract) nodes . Any Value: Any node
below this node is to be considered. “I
search for a blue car (but don’t mind if it is
light or dark blue)”.

Edit similarity measures: Symbol, Taxonomy

The taxonomy is to be used in an asymmetric way. This
means that the taxonomy is used in two different ways,
depending on the fact if the query value is greater than
the value in the case or vice versa. Therefore the GUI
provides you with the option to specify different uses of
the taxonomy for the Query (Q) as well as the Case (C)

You can specify distinct
ways to describe
(calculate) the similarity
for the query and for the
case comparison.

If you opt for handling
values of inner nodes with
uncertainty you have to
specify the semantic you
want to use to handle the
uncertainty:

Pessimistic: Use the lower
bound of the similarity
(Q,C)

Optimistic: Use the upper
bound of the similarity
(Q,C)

Average: Use the average
between the lower and
upper bound

The taxonomy editor automatically creates the table used for
the table editor. So you can use the taxonomy editor to initially
fill the table and then switch the similarity mode to table for
manually edit the table. This is very useful in case you want to
use the table editor but your project structure is very complex.

66

Edit similarity measures: Integer, Simple function

 Difference calculates a numerical value for
the difference between Q)uery and (C)ase
values
Quotient calculates a quotient out of the
(Q)uery and (C)ase values

Left side: The function
specifies the similarity
for (C)ase values lower
than the (Q)uery value

Symmetry allows you to choose to
specify a symmetric or asymmetric
function, choosing asymmetric activates
the input for both sides of the function
(C<Q and C>Q)

Constant: Enter a value
that the function will
return as a constant

Modell a smooth step
in the function at a
given value

Modell a step in the
function and the value
at which it should occur

Modell the polynomial
change of similarity
with a basic value

Right side: The
function specifies the
similarity for (C)ase
values higher than the
(Q)uery value

67

Edit similarity measures: Integer, Advanced function

As you are modelling the function
freely you should always select
asymmetric for advanced integer
and float functions

This is the List of your
added similarity
points to the function.
You can remove points
by selecting the entry
in the table and then
click ‘Remove’.

Add a new similarity point to the
function. To add it click the button
and then enter the function value
(Distance) and the desired
similarity for this value.

You can add similarity points and the
result will be an interpolated function
for your similarity measure.

The advanced
similarity mode can
be chosen for the
attribute types integer
and float.

You should use
advanced similarity
mode in case your
similarity measure
function cannot be
represented by the
standard similarity
mode.

68

Edit similarity measures: Global Similarity Measure

The global similarity
function (Amalgamation
function) selected for this
concept. You can add
alternative global
similarity functions,
analogue to the definition
of alter-native SMF’s for
Attributes.

Select the concept to
model the global
similarity measure for. In
this example the global
similarity of the concept
‘Car’ is modelled

Set the weight of the
attribute (It’s a good idea to
use 100 as an overall value
for the case and distribute it
as weights onto the
attributes)

The SMF (Similarity
Function) in use for this
attribute, Click the field
to select a SMF from
the available SMF’s for
the Attribute

Set the Attribute as to
be included in the
global similarity
calculation or not

Options for the Global similarity measure are:
Weighted sum: use weights on the attributes
Euclidian
Minimum: of the local similarities (max(weight*local_sim))
Minimum: of the local similarities (min(weight*local_sim))

69

Edit similarity measures: Global Similarity Measure

The global similarity
function to use is selected
by right clicking the
desired function and then
Set it as the active
amalgamation function.

70

Edit similarity measure: Concept Explanation

The Concept
Explanation Tab lets
enables you to
provide explanations
about the concepts
nature and/or
purpose as well as to
provides URL’s
pointing to
explanatory artefacts.

Add: Opens a dialog in which you can
specify further URL’s that point to
resources that explain the concept.
Remove: Removes a selected URL entry
from the list.

Add a short descriptive
text that explains the
nature and/or purpose
of the concept.

Add a URL to a resource
that helps explaining
the concept

71

Edit similarity measures: Attribute Explanation

The Concept
Explanation Tab
enables you to
provide explanations
about the selected
attributes nature
and/or purpose as
well as to provides
URL’s pointing to
explanatory artefacts.

Add: Opens a dialog in which you can
specify further URL’s that point to
resources that explain theattribute.
Remove: Removes a selected URL entry
from the list.

Add a short descriptive
text that explains the
nature and/or purpose
of the attribute.

Add a URL to a resource
that helps explaining
the attribute

72

Edit similarity measures: Define Attribute: Symbol

The list of values
(Symbols) the attribute
has

Name: Enter the name
of the attribute

Type: Symbol(ic)
This is automatically
chosen, depending on
the type you specified
for the attribute.

Add: Lets you add symbols to the list of defined symbols for the attribute
Note: As long as you don’t cancel the dialog you will be asked to enter further symbols
Rename: Lets you rename a selected symbol from the list
Remove: Removes the selected symbol from the list

73

Edit similarity measure: Define Attribute: Integer

Editing float similarity measures works analogue

Enter the allowed
Minimum and
Maximum values for
this attribute.

Name: Enter the name
of the attribute

Type: Integer

Multiple: ?

74

Concept Information

Double clicking a
concept brings up its
information's, these
are its Name and the
SMF used on it

The name of the concept. To
rename it simply enter a new
name here

The available and used
SMF for the concept

75

Project Information

The SMF shown
herespecifies how
special values (like
unknown, unspecified)
are handled within the
project. Please see the
next slide on this.

Add a

Double clicking a project
brings up its
information's, these are
its Name and the SMF
used on it

The name of the concept. To rename it simply enter a
new name here
You can also provide Information about the author of
the project

76

Edit similarity measures: Project, Handling unspecified attributes

The SMF of the
project defines the
handling of the special
values for attribute.
These values are:
others
unknown
undefined

The SIM describes
how similar these
special values are to
each other. You can
define the way your
CBR engine handles
unknown data by
changing this SIM.

The selected project

Others: If the value/range for an Attribute is
not provided by the cbr engine the user can
chose “other”

Unknown: If the value/range for an
Attribute is not known by the user, he can
chose “unknown”

Undefined: If a user doesn’t want to specify
the value/range for an Attribute he can
chose “undefined”

77

Retrieval

This list shows the result
set of a retrieval. The
overall similarity is
shown and also used to
sort the retrieved cases
by their similarity to the
case specified in the
retrieval query

The concept car is
selected as the concept to
start a retrieval for.

Select a case base
from the available case
bases within your
project via this
dropdown menu

Start retrieval: Start the
retrieval process on the
selected case base with
the specified query.

List view of the cases
present in the selected
case base

This input form lets you
specify concrete values
for all attributes. By
specifying attribute
values you formulate you
query to the system.

Change: Allows you to
select a new symbol
from the list of symbols
that are defined for the
Attribute

Special value: Allows
you to select a special
value (like “unknown”)
for the attribute. This is
useful to formulate
sparse queries.

78

Initial Case Bases perspective view (Project selected)

The case base(s) used
within the project are
listed here, if a project
is selected.

You have to select a
project to work on its
case base(s)

The Case base
perspective Tab is
selected.

The Case Bases perspective
allows you to add/remove
and modify the data within
your cases and subsequently
case base(s) after modelling
your domain knowledge in
the Modelling perspective

Add and delete case
bases

The Case Base Tab is
selected: This Tab lets
you add and delete
case bases.

79

Case base browsing, Case viewing

Clicking a case in the
case list brings up the
individual data of this
case in the case view

Display of the selected
case base’s name

Double clicking a case
base brings up its Cases
in the case list.

The case view displays the
individual data (values of the
Attributes) of a selected case

80

Instance View, Concept selected and an Instance double-clicked

The selected case
from the list of cases
(Instances) in the
currently selected
case base , available
for the selected
concept (car) is shown
in the Instance view.

The Concept car is
selected, which allows
to add/remove and
edit Instances (cases)
of this concept.

Within this detailed view you can
enter/change the data (attribute
values) of a case

Overview of the
selected Instance of a
concept (selected case)

Delete the selected
Instance

The Instance tab is
selected: This Tab lets
you add and delete
case(s) / Instances of
the selected concept.

81

Add a new Instance

Adding a new Instance: Entering the attribute values

For every attribute not of the data type
symbol you can click into the field to
directly enter a value for the attribute,
for example an integer number.

The Concept car is
selected, which allows
to add/remove and
edit Instances (cases)
of this concept.

82

“undefined” is the default value for
all attribute values. By clicking here
you can change the value to a
different special value: “unknown”.

For all attributes of the data type
“symbol” by clicking “Change” a
symbol can be assigned as the
value of the attribute.

A new tab is opened when a
new instance is created,
displaying the ID of the new
instance.

Click here to create a
new Instance

Filter integration is not
yet enabled

Make sure to save your
Project after adding
new Instances to your
case base(s)

Adding new Instances: Importing from CSV files

To import cases for a concept (Instances
of the concept) right click the concept
and select “Import cases from CSV file”
in the context menu

83

Adding new Instances: Importing from CSV files

In the upcoming dialogue you can
specify the csv file to load and the
seperators that are used within the
specified csv file. The dialogue will
show you a preview of the data found
in the csv file you specified using the
seperators you specified. To import this
data click on “Finish”.

84

Adding the new Instances to a case base

85

Make sure to save your
Project after adding
new Instances to your
case base(s)

The imported instances can now be
added to a (selected) case base by
dragging and dropping them into the
case base’s “Cases” field.

You always drag and
drop your new
instances into the case
base, regardless if
imported or generated
or entered.

Deleting an Instances from the case base

Select the Instance(s)
to be deleted and
then click on the
Delete button (To
view the deletion
update the case base
view (re open it)
manually for now.

86

Adding a new case base to a project

Select the project you
want to add a case base
to

87

Click here to create a
new case base for the
currently selected
project

Name the new case base and
press “Ok”

Deleting a case base from a project

Select the project you
want to delete a case
base from

88

Click here to delete the
selected case base

Select the case base
you want to delete

Deleting a case base from a project

Select the project you
want to delete a case
base from

89

Click here to delete the
selected case base

Select the case base
you want to delete

myCBR Getting started:

Modeling your domain

90

Start up myCBR

91

Starting up myCBR will bring up the UI
as seen above. From this point on you
can either start a new project or load an
existing project.

Create a new project

92

Selecting “New Project” from the “File”
context menu for now will start our new
example project.

Create a new project

93

In the “New Project” dialog, specify the
name of the new project and where to
store it, then press “Save”

Our new project for this example will be
named “NewExampleProject”

Create a new project

94

After creating and double-clicking the
new project myCBR should present you
with a view like this.

Add a concept to the project

95

1) Select the project to add a concept to

2) Click on “Add a concept”

3) In the dialog, enter the concepts name

4) Confirm the creation of the concept by
clicking OK

Add a concept to the project

96

2) Double-clicking the concept “Car”
should open the basic concept view as
shown in this screenshot.

1) Double-clicking your project expands
the concept tree which now should be
populated by the concept “Car”.

Add an attribute to the concept “Car”

97

1) Select the concept you want to add an
attribute to. In our example we selected
the attribute “Car”.

2) Click on “Add new attribute”

3) In the dialog, enter the attributes
name

5) Confirm the creation of the attribute
by clicking on the “Finish” button.

4) Also in the dialog select the attributes
data type by clicking on the drop down
menu “Type” and selecting the data
type you want for the attribute, in our
example this is the data type “Symbol”.

Entering values for an attribute of the symbol data type

98

1) Select the attribute you want to enter
values for.

2) Click on “Add” (a value)

4) Confirm the value by clicking “OK”.
The dialog will reappear to allow you to
enter further values. To stop entering
values just click on “Cancel”.

3) Enter the value, in our example: Enter
a string describing a colour.

Values already entered are listed here.

Modeling a similarity measure for a symbol attribute

2) Select the attribute (if not already
working on the attribute and thus having
it selected anyway).

1) Finish entering all the values you want
the attribute to have

3) Either double-click the default
function to edit it or rather click on “Add
new function” to add a new similarity
measure (function).

99

Modeling a similarity measure for a symbol attribute

100

2) Select the kind of the new function

1) Enter a name for the new function

3) Confirm your entries by clicking on
“Finish”

Modeling a similarity measure for a symbol attribute

101

2) You can enter values between 0.0 and
1.0 by directly clicking into a field.

1) You can choose between a symmetric
or asymmetric matrix

3) The values are also color-coding their
cells to help you with visual feedback
while modelling your similarity measure.

Modeling a similarity measure as a symbol taxonomy

102

You can specify distinct ways to describe
(calculate) the similarity for the query
and for the case comparison.

You can choose between a symmetric or
asymmetric calculation

You can arrange the symbols in the
taxonomy by drag & drop.

Assigning a similarity measure to an attribute

103

3) Select the desired similarity measure
from the drop down menu “SMF”. In
our example we are choosing
“SimColorTaxonomy” as the similarity
measure to be used to compute the
local similarity of two symbols
representing a colour within a query
and our cases.

1) Double-click the concept that contains
the attribute you want to assign a
similarity measure for.

2) Double-click the global similarity
measure of the concept (car in our case)
default function (or the currently
selected similarity measure for the
concept.

Adding a similarity measure for a float attribute

104

For float, as well as integer attributes
you are required to enter a minimum
and maximum value wherein the
minimum requires to be lower then the
maximum value.

Access the attributes characteristics by
double-clicking it.

After adding a new attribute of the data
type float you can again specify its name.

Modeling a similarity measure for a float attribute

105

In asymmetric mode this set (the left
one) of options shapes the half of the
function that calculates the similarity for
query values greater then the values in a
given case.

You can select symmetric or asymmetric
behaviour of the function. In our
example we have chosen an asymmetric
function

In asymmetric mode this set (the right
one) of options shapes the half of the
function that calculates the similarity for
query values smaller then the values in a
given case.

You can decide if you want to have the
plain distance or a quotient calculated as
a similarity value.

As we want to modell the idea that a
higher price is bad we made the
function rapidly decline the calculated
similarity value after passing the query
value (aka Having a higher price in the
case then in the query).

Assigning the similarity measure to the float attribute

106

3) Select the desired similarity measure
from the drop down menu “SMF”. In
our example we are choosing
“SimPrice” as the similarity measure to
be used to compute the local similarity
of two float numbers representing a
cars price within a query and our cases.

1) Double-click the concept that contains
the attribute you want to assign a
similarity measure for.

2) Double-click the global similarity
measure of the concept (car in our case)
default function (or the currently
selected similarity measure for the
concept.

Adding explanations to a concept

107

You can enter a free text that will be
available via the API as the canned
explanation for this concept.

Select the concept you want to add
canned explanations and/or an
explanatory artefact for.

Or you can click “Add” to add a
reference (URL) to an explanatory
artefact (for example a webpage with
further information about the concept)
for the concept.

Remember that you have to click on the
“concept Explanation” Tab to get to the
Concept Explanation edit view. To
normally keep working with the concept
make sure you switch back to the
“Concept” tab.

Modeling the global Similarity Measure

108

You can select the functions nature here.
In the example we have chosen a
weighted sum.

Select the concept you want to define a
global similarity measure for

Double clicking in the “Weight” field
allows you to enter a value for the
weight of the local similarity measure
associated with this field. The
weighted sum of all local similarity
measures will then form the global
similarity between, in our example,
one car and another. In our example
“Price is now twice as important for
the global similarity between two cars
than “Color” is.

Select the concepts default function to
edit it.

By setting “Discriminant” to “false” you exclude
the local similarity value from being used in the
calculation of the global similarity value.

Clicking in the “SMF” field allows you to
chose one of the available similarity
functions associated with the attribute.

Doing a Retrieval test [1]

After adding a case-base to your project… [See Slide 85]

109

Doing a Retrieval test [2]

And adding some instances of the concept “car” aka “cases” to the case base… See slides: 82, 83

You are ready to do a retrieval test.

The retrieval GUI is shown
And explained again on the
following slide.

110

Retrieval GUI

Reminder

This list shows the result
set of a retrieval. The
overall similarity is
shown and also used to
sort the retrieved cases
by their similarity to the
case specified in the
retrieval query

The concept car is
selected as the concept to
start a retrieval for.

Select a case base
from the available case
bases within your
project via this
dropdown menu

Start retrieval: Start the
retrieval process on the
selected case base with
the specified query.

List view of the cases
present in the selected
case base

This input form lets you
specify concrete values
for all attributes. By
specifying attribute
values you formulate you
query to the system.

Change: Allows you to
select a new symbol
from the list of symbols
that are defined for the
Attribute

Special value: Allows
you to select a special
value (like “unknown”)
for the attribute. This is
useful to formulate
sparse queries.

111

Doing a Retrieval test [3]

Seen in our example here: We did a retrieval with the query ‘Color = red and Price = 5500’.

112

As you can see the cases in our
case base are not very
discriminable with respect to their
similarity to the query.

This is an effect caused by the
attribute ‘Price’ which we defined
with a value range of 0 to
1.000.000.

As we only have cases (aka cars)
with a price up to 30.000 the
value range for the attribute
“Price” is far to wide for our data
(cases) at hand right now.

How can we change our model to
reflect this knowledge, gathered
by retrieval testing?

See how, in the following section:
Padding your knowledge model.

myCBR Getting started:

Refining your knowledge model

113

Doing a Retrieval test (again) [4]

As we have seen our knowledge model is not yet accurate enough, as it was revealed by our first
retrieval test at the end of the previous section). To amend the far to high value for “Price” we
adapt price to 50000 and the cases become more distinguishable

Changing the value range of the
attribute “Price” to 0 to 50.000 and
then redoing the retrieval with the
same query as in our first retrieval
test results in a far more
distinguishable calculation of the
case’s global similarities.

As you can see to the right, the
similarities of the cases to the query
are now more distinct and spread
over the interval [0…1] than within
the first retrieval test result depicted
here again:

Thus, by adapting the value range of
the attribute “Price”, based upon
results from our first retrieval test,
we enhanced the quality of our
knowledge model and thus the
retrieval results it provides.

114

After successful refinement: Save your model (project)

115

Select the project you want to save then
in the “File” dialog select “Save” or “Save
as”.

In the dialog select the place to save your
project in, name it and click on “Save”.

 The goals of knowledge model refinement are:

Enhance the performance of your models retrieval

Remove unnecessary attributes

Reduce value ranges

Streamline similarity measures

Trim your case base (remove redundant, rarely used cases)

Enhance the accuracy of your model

Refine similarity measures

Add or diversify attributes to your concept

116

Goals of knowledge model refinement

Enhance the performance of your models retrieval while not missing a thing:

Try to identify attributes that doesn’t have great impact on your retrieval, then remove them

Reduce your similarity measures to the absolute necessary, as their computation takes most effort

Monitor the frequency of your cases being retrieved, remove redundant or rarely used cases

User-test your case base(s) to see if you have already integrated most of the cases a user can come up with in your
domain context

Enhance the accuracy of your model while keeping it lean:

Add or delete locale similarities from your global similarity measure to keep it lightweight but also precise enough

‘Sharpen’ your similarity measures by ranging the value ranges to ranges to be encountered in the day to day use of
your model

User-test the modelling of your concepts with users unfamiliar to your model to, this might yield valuable feedback
to be integrated in your model

117

General tips for knowledge model refinement

118

The cycle of knowledge model refinement

Perform a test series of
retrievals on your model

and subsequent data

Evaluate your retrieval
results with regard to

performance and
accuracy

Initially model or ‘tweak’
your knowledge model
in the workbench and /
or create or optimise

(add, reduce) your data
(case bases(s))

 The cycle of knowledge model refinement offers the opportunity for iterative knowledge model optimisation
even at runtime of your application. As the CBREngine respectively your knowledge model and data are
modularised from your application (separated) you can optimise it and ‘re plug’ thus reintegrate the optimised
version to your application and instantly benefit from the improvements within your live application. This way
you can choose if you want to optimise your CBR Engine until you reach certain quality measures or want to
constantly have it evolve during being used. Integrating the

